A Little Bijection for Affine Stanley Symmetric Functions

نویسندگان

  • THOMAS LAM
  • MARK SHIMOZONO
چکیده

Little [Adv. Math. 174 (2003), 236–253] developed a combinatorial algorithm to study the Schur-positivity of Stanley symmetric functions and the Lascoux–Schützenberger tree. We generalize this algorithm to affine Stanley symmetric functions, which were introduced recently in [T. Lam: “Affine Stanley symmetric functions,” Amer. J. Math., to appear].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorization of the Robinson-Schensted-Knuth correspondence

In [4], a bijection between collections of reduced factorizations of elements of the symmetric group was described. Initially, this bijection was used to show the Schur positivity of the Stanley symmetric functions. Further investigations have revealed that our bijection has strong connections to other more familiar combinatorial algorithms. In this paper we will show how the Robinson-Schensted...

متن کامل

Affine Stanley Symmetric Functions

We define a new family F̃w(X) of generating functions for w ∈ S̃n which are affine analogues of Stanley symmetric functions. We establish basic properties of these functions such as their symmetry and conjecture certain positivity properties. As an application, we relate these functions to the k-Schur functions of Lapointe, Lascoux and Morse as well as the cylindric Schur functions of Postnikov. ...

متن کامل

Stanley Symmetric Functions and Peterson Algebras

These are (mostly) expository notes for lectures on affine Stanley symmetric functions given at the Fields Institute in 2010. We focus on the algebraic and combinatorial parts of the theory. The notes contain a number of exercises and open problems. Stanley symmetric functions are a family {Fw | w ∈ Sn} of symmetric functions indexed by permutations. They were invented by Stanley [Sta] to enume...

متن کامل

AFFINE STANLEY SYMMETRIC FUNCTIONS By THOMAS LAM

We define a new family F̃w(X) of generating functions for w ∈ S̃n which are affine analogues of Stanley symmetric functions. We establish basic properties of these functions including symmetry, dominance and conjugation. We conjecture certain positivity properties in terms of a subfamily of symmetric functions called affine Schur functions. As applications, we show how affine Stanley symmetric fu...

متن کامل

Affine Stanley symmetric functions for classical types

We introduce affine Stanley symmetric functions for the special orthogonal groups, a class of symmetric functions that model the cohomology of the affine Grassmannian, continuing the work of Lam and Lam, Schilling, and Shimozono on the special linear and symplectic groups, respectively. For the odd orthogonal groups, a Hopf-algebra isomorphism is given, identifying (co)homology Schubert classes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006